Constraint-Defined Manifolds: a Legacy Code Approach to Low-Dimensional Computation
نویسندگان
چکیده
If the dynamics of an evolutionary differential equation system possess a lowdimensional, attracting, slow manifold, there are many advantages to using this manifold to perform computations for long term dynamics, locating features such as stationary points, limit cycles, or bifurcations. Approximating the slow manifold, however, may be computationally as challenging as the original problem. If the system is defined by a legacy simulation code or a microscopic simulator, it may be impossible to perform the manipulations needed to directly approximate the slow manifold. In this paper we demonstrate that with the knowledge only of a set of “slow” variables that can be used to parameterize the slow manifold, we can conveniently compute, using a legacy simulator, on a nearby manifold. Forward and reverse integration, as well as the location of fixed points are illustrated for a discretization of the Chafee-Infante PDE for parameter values for which an Inertial Manifold is known to exist, and can be used to validate the computational results.
منابع مشابه
X iv : p hy si cs / 0 31 20 94 v 1 1 5 D ec 2 00 3 Constraint - defined Manifolds : a Legacy Code Approach to Low - dimensional Computation
If the dynamics of an evolutionary differential equation system possess a lowdimensional, attracting, slow manifold, there are many advantages to using this manifold to perform computations for long term dynamics, locating features such as stationary points, limit cycles, or bifurcations. Approximating the slow manifold, however, may be computationally as challenging as the original problem. If...
متن کاملD ec 2 00 3 Constraint - defined Manifolds : a Legacy Code Approach to Low - dimensional Computation
If the dynamics of an evolutionary differential equation system possess a lowdimensional, attracting, slow manifold, there are many advantages to using this manifold to perform computations for long term dynamics, locating features such as stationary points, limit cycles, or bifurcations. Approximating the slow manifold, however, may be computationally as challenging as the original problem. If...
متن کاملTwo perspectives on reduction of ordinary differential equations
This article is concerned with general nonlinear evolution equations x′ = g(x) in R involving multiple time scales, where fast dynamics take the orbits close to an invariant low-dimensional manifold and slow dynamics take over as the state approaches the manifold. Reduction techniques offer a systematic way to identify the slow manifold and reduce the original equation to an autonomous equation...
متن کاملLow dimensional flat manifolds with some classes of Finsler metric
Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.
متن کاملMechanical behaviour of motion for the two-dimensional monolayer system
In this paper we study the dynamics of the 2D-motion of a particle of monolayer. First we consider the usual physical time component and the plan manifold R2, having the polar coordinates. Then a geometric approach to nonholonomic constrained mechanical systems is applied to a problem from the two dimensional geometric dynamics of the Langmuir-Blodgett monolayer. We consider a constraint sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 25 شماره
صفحات -
تاریخ انتشار 2005